Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision
نویسندگان
چکیده
Many engineering design applications require geometric modeling and mechanical simulation of thin flexible structures, such as those found in the automotive and aerospace industries. Traditionally, geometric modeling, mechanical simulation, and engineering design are treated as separate modules requiring different methods and representations. Due to the incompatibility of the involved representations the transition from geometric modeling to mechanical simulation, as well as in the opposite direction, requires substantial effort. However, for engineering design purposes efficient transition between geometric modeling and mechanical simulation is essential. We propose the use of subdivision surfaces as a common foundation for modeling, simulation, and design in a unified framework. Subdivision surfaces provide a flexible and efficient tool for arbitrary topology free-form surface modeling, avoiding many of the problems inherent in traditional spline patch based approaches. The underlying basis functions are also ideally suited for a finite-element treatment of the so-called thin shell equations, which describe the mechanical behavior of the modeled structures. The resulting solvers are highly scalable, providing an efficient computational foundation for design exploration and optimization. We demonstrate our claims with several design examples, showing the versatility and high accuracy of the proposed method.
منابع مشابه
Non-Linear Mechanics and Collisions for Subdivision Surfaces
Numerically accurate simulation of the mechanical behavior of thin flexible structures is important in application areas ranging from engineering design to animation special effects. Subdivision surfaces provide a unique opportunity to integrate geometric modeling with concurrent finite element analysis of thin flexible structures. Their mechanics are governed by the so-called thin-shell equati...
متن کاملNon-Linear Mechanics and Collisions for Subdivision Surfaces
Numerically accurate simulation of the mechanical behavior of thin flexible structures is important in application areas ranging from engineering design to animation special effects. Subdivision surfaces provide a unique opportunity to integrate geometric modeling with concurrent finite element analysis of thin flexible structures. Their mechanics are governed by the so-called thin-shell equati...
متن کاملFinite Element Analysis of Buckling of Thin Cylindrical Shell Subjected to Uniform External Pressure
One of the common failure modes of thin cylindrical shell subjected external pressure is buckling. The buckling pressure of these shell structures are dominantly affected by the geometrical imperfections present in the cylindrical shell which are very difficult to alleviate during manufacturing process. In this work, only three types of geometrical imperfection patterns are considered namely (a...
متن کاملIsogeometric shape optimisation of shell structures using multiresolution subdivision surfaces
We introduce the isogeometric shape optimisation of thin shell structures using subdivision surfaces. Both triangular Loop and quadrilateral Catmull-Clark subdivision schemes are considered for geometry modelling and finite element analysis. A gradientbased shape optimisation technique is implemented to minimise compliance, i.e. to maximise stiffness. Different control meshes describing the sam...
متن کاملAnalysis of Thin-Walled Steel Sections Filled with Concrete Using Non-Linear Finite Element Method
Being economical and performing well under cyclic loads, steel sections filled with concrete have been widely used in structural buildings. Extensive studies and experiments have been conducted to investigate the influence of different parameters and loadings on the behavior of these structural components. Based on the data available from previous experiments and studies, this paper discusses t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer-Aided Design
دوره 34 شماره
صفحات -
تاریخ انتشار 2002